1. Let $f : [0,1] \to \mathbb{R}$ be the function $f(x) = x \forall x \in [0,1]$. From first principles, that is, through computing upper and lower sums, show that

$$\int_0^1 f = \frac{1}{2}.$$

Solution: Let P_N be the partition $\{0, \frac{1}{N}, \frac{2}{N}, ..., 1\}$, i.e. each point is evenly spaced with the distance $\frac{1}{N}$. The upper and lower sums for such a partition are

$$U(P_N, f) = \sum_{i=1}^{N} \sup_{\left[\frac{i-1}{N}, \frac{i}{N}\right]} x \left[\frac{i}{N} - \frac{i-1}{N}\right] = \sum_{i=1}^{N} \frac{i}{N} \frac{1}{N} = \frac{1}{N^2} \left[\frac{N(N+1)}{2}\right] = \frac{1}{2} + \frac{1}{2N}.$$
$$L(P_N, f) = \sum_{i=1}^{N} \inf_{\left[\frac{i-1}{N}, \frac{i}{N}\right]} x \left[\frac{i}{N} - \frac{i-1}{N}\right] = \sum_{i=1}^{N} \frac{i-1}{N} \frac{1}{N} = \frac{1}{N^2} \left[\frac{N(N-1)}{2}\right] = \frac{1}{2} - \frac{1}{2N}.$$

Let $N \to \infty$, both $U(P_N, f)$ and $L(P_N, f)$ go to $\frac{1}{2}$, from above and below respectively. Since upper sums are upper bounds for lower sums, every lower sum is bounded above by $\frac{1}{2}$. Since there are lower sums that are arbitrarily close to $\frac{1}{2}$ (take N large enough), it follows that $\frac{1}{2}$ is the least upper bound for the lower sums. Similarly we conclude that $\frac{1}{2}$ is the greatest lower bound for upper sums. This shows that f(x) is Riemann integrable on [0, 1] with integral $\frac{1}{2}$.

2. Suppose $g:[0,1] \to [0,\infty)$ is a continuous function and $\int_0^1 g = 0$ for all $t \in [0,1]$.

Solution: Suppose $g \neq 0$ on [0, 1]. Since g is continuous, there is a non empty interval $(c, d) \subseteq [0, 1]$ and $\alpha > 0$ satisfying $g(x) \ge \frac{\alpha}{2}$ for $x \in (c, d)$, then

$$\int_0^1 g \ge \int_c^d g \ge \frac{\alpha}{2}(d-c) > 0.$$

This is a contradiction to $\int_0^1 g = 0$.

3. Let Ω be a non-empty finite set and let $\mathcal{F} = \{A : A \subseteq \Omega\}$ be the power set of Ω . For $A, B \in \mathcal{F}$, define d(A, B) as the number of elements in $A\Delta B := (A \cap B^c) \cup (B \cap A^c)$. Show that d is a metric on \mathcal{F} .

Solution: (i). Since $A\Delta A = (A \cap A^c) \cup (A \cap A^c) = \emptyset$, therefore d(A, A) = 0. Suppose d(A, B) = 0, then $(A \cap B^c) \cup (B \cap A^c) = \emptyset$, we have both $(A \cap B^c) = \emptyset$ and $(B \cap A^c) = \emptyset$. Therefore A = B.

(ii). $A\Delta B = (A \cap B^c) \cup (B \cap A^c) = (B \cap A^c) \cup (A \cap B^c) = B\Delta A$ implies d(A, B) = d(B, A).

(iii). $d(A,C) \leq d(A,B) + d(B,C)$, Using Venn diagrams one can easily verify the triangular inequality.

4. Let (X,d) be a compact metric space. Suppose $f : X \to \mathbb{R}$ is a continuous function. Show that $\{f(x) : x \in \mathbb{X}\}$ is compact.

Solution: Let x_n be any sequence in X. Since X is compact then x_n has a convergent subsequence x_q . Now take the sequence $f(x_n)$ and notice that it has a convergent subsequence $f(x_q)$ [using definition of continuity]. Since for any point $y \in f(X)$, there exists $x \in X$ such that f(x) = y. Every sequence in f(X) can be written as $f(x_n)$ for some sequence $x_n \in X$. Therefore f(X) is compact.

5. Let $h : \mathbb{R}^2 \to \mathbb{R}$ be the function defined by

$$h(x,y) = \begin{cases} \frac{3x^4}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

Determine as to whether h is continuous at the origin or not. Compute partial derivatives $D_1h(0,0)$ and $D_2h(0,0)$ if they exist.

Solution: To prove that h is continuous at the origin. Let $\epsilon > 0$ be given, choose $\delta > 0$ such that $\delta^2 = \frac{\epsilon}{3}$. Whenever $0 < (x, y) \in \mathbb{R}^2$ with $|(x, y)| := \max\{|x|, |y|\} < \epsilon$, we have

$$|h(x,y) - h(0,0)| = |h(x,y)| = \frac{3x^4}{x^2 + y^2} \le \frac{3x^4}{x^2} = 3x^2 < 3\delta^2 < \epsilon$$

Thus h is continuous at (0,0).

$$D_1 h(0,0) = \lim_{t \to 0} \frac{h(0+t,0) - h(0,0)}{t} = \lim_{t \to 0} \frac{h(t,0) - h(0,0)}{t} = \lim_{t \to 0} 3t = 0$$
$$D_2 h(0,0) = \lim_{t \to 0} \frac{h(0,0+t) - h(0,0)}{t} = \lim_{t \to 0} \frac{h(0,t) - h(0,0)}{t} = \lim_{t \to 0} \frac{0 - 0}{t} = 0$$

6. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable (has total derivative) at $a \in \mathbb{R}^n$. Show that f is continuous at $a \in \mathbb{R}^n$.

Solution: Suppose f is differentiable at a, then there exists $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n) \in \mathbb{R}^n$, such that

$$|f(a+h) - f(a) - \alpha h| = ||h||\epsilon(h)$$
 and $\epsilon(h) \to 0$ as $h \to 0$

Hence

$$|f(a+h) - f(h)| \le ||h|| (\sum_{i=1}^{n} |\alpha_i|) + ||h||\epsilon(h).$$

and $\epsilon(h) \to 0$ as $h \to 0$, therefore f(a+h) - f(a) as $h \to 0$. This proves that f is continuous at a.

7. Use the method of Lagrange multipliers to find the point nearest to the origin in the plane 2x + 3y - z = 5 in \mathbb{R}^3 .

Solution: The distance of an arbitrary point (x, y, z) from the origin is $d = \sqrt{x^2 + y^2 + z^2}$. It is geometrically clear that there is an absolute minimum of this function for (x, y, z) lying on the plane. To find it, we instead minimize the function

$$d^{2} = f(x, y, z) = x^{2} + y^{2} + z^{2}$$

subject to the constraint g(x, y, z) = 0 where g(x, y, z) = 2x + 3y - z - 5. The gradients of these two functions are $\nabla f = (2x, 2y, 2z)$, $\nabla g = (2, 3, -1)$. Since $\nabla g \neq 0$ ever, the absolute minimum of the distance function we are looking for will occur at a point where

$$\nabla f = \lambda g, \quad g = 0$$

Getting rid of the 2's in ∇f (which all get absorbed into the dummy constant λ) and settings components of the gradient equation, we obtain the system of equations,

$$x = 2\lambda, y = 3\lambda, z = -\lambda, 2x + 3y - z = 5\lambda$$

Solving the first three equations gives $y = \frac{3}{2}x$, $z = \frac{-1}{2}x$. Plugging these into the equation of the plane gives $2x + \frac{9}{2}x + \frac{1}{2}x = 5$, and so the point we are looking for is $x = \frac{5}{7}$, $y = \frac{15}{14}$, $z = \frac{-5}{14}$.