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1. Let f : [0, 1] → R be the function f(x) = x ∀ x ∈ [0, 1]. From first principles, that is, through
computing upper and lower sums, show that∫ 1

0

f =
1

2
.

Solution: Let PN be the partition {0, 1
N ,

2
N , ..., 1}, i.e. each point is evenly spaced with the distance

1
N . The upper and lower sums for such a partition are

U(PN , f) =

N∑
i=1

sup
[ i−1

N , i
N ]

x [
i

N
− i− 1

N
] =

N∑
i=1

i

N

1

N
=

1

N2
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N(N + 1)

2
] =

1

2
+

1

2N
.

L(PN , f) =
N∑
i=1

inf
[ i−1

N , i
N ]
x [

i

N
− i− 1

N
] =

N∑
i=1

i− 1

N

1

N
=

1

N2
[
N(N − 1)

2
] =

1

2
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.

Let N →∞, both U(PN , f) and L(PN , f) go to 1
2 , from above and below respectively. Since upper

sums are upper bounds for lower sums, every lower sum is bounded above by 1
2 . Since there are

lower sums that are arbitrarily close to 1
2 (take N large enough), it follows that 1

2 is the least upper
bound for the lower sums. Similarly we conclude that 1

2 is the greatest lower bound for upper sums.
This shows that f(x) is Riemann integrable on [0, 1] with integral 1

2 .

�

2. Suppose g : [0, 1]→ [0,∞) is a continuous function and
∫ 1

0
g = 0 for all t ∈ [0, 1].

Solution: Suppose g 6= 0 on [0, 1]. Since g is continuous, there is a non empty interval (c, d) ⊆ [0, 1]
and α > 0 satisfying g(x) ≥ α

2 for x ∈ (c, d), then

∫ 1

0

g ≥
∫ d

c

g ≥ α

2
(d− c) > 0.

This is a contradiction to
∫ 1

0
g = 0.

�

3. Let Ω be a non-empty finite set and let F = {A : A ⊆ Ω} be the power set of Ω. For A,B ∈ F ,
define d(A,B) as the number of elements in A∆B := (A∩Bc)∪ (B ∩Ac). Show that d is a metric
on F .

Solution: (i). Since A∆A = (A∩Ac)∪ (A∩Ac) = ∅, therefore d(A,A) = 0. Suppose d(A,B) = 0,
then (A ∩Bc) ∪ (B ∩Ac) = ∅, we have both (A ∩Bc) = ∅ and (B ∩Ac) = ∅. Therefore A = B.

(ii). A∆B = (A ∩Bc) ∪ (B ∩Ac) = (B ∩Ac) ∪ (A ∩Bc) = B∆A implies d(A,B) = d(B,A).

(iii). d(A,C) ≤ d(A,B) + d(B,C), Using Venn diagrams one can easily verify the triangular
inequality.

�
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4. Let (X, d) be a compact metric space. Suppose f : X → R is a continuous function. Show that
{f(x) : x ∈ X} is compact.

Solution: Let xn be any sequence in X. Since X is compact then xn has a convergent subsequence
xq. Now take the sequence f(xn) and notice that it has a convergent subsequence f(xq) [ using
definition of continuity]. Since for any point y ∈ f(X), there exists x ∈ X such that f(x) = y.
Every sequence in f(X) can be written as f(xn) for some sequence xn ∈ X. Therefore f(X) is
compact.

�

5. Let h : R2 → R be the function defined by

h(x, y) =

{
3x4

x2+y2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

Determine as to whether h is continuous at the origin or not. Compute partial derivatives D1h(0, 0)
and D2h(0, 0) if they exist.

Solution: To prove that h is continuous at the origin. Let ε > 0 be given, choose δ > 0 such that
δ2 = ε

3 . Whenever 0 < (x, y) ∈ R2 with |(x, y)| := max{|x|, |y|} < ε, we have

|h(x, y)− h(0, 0)| = |h(x, y)| = 3x4

x2 + y2
≤ 3x4

x2
= 3x2 < 3δ2 < ε.

Thus h is continuous at (0, 0).

D1h(0, 0) = lim
t→0

h(0 + t, 0)− h(0, 0)

t
= lim
t→0

h(t, 0)− h(0, 0)

t
= lim
t→0

3t = 0

D2h(0, 0) = lim
t→0

h(0, 0 + t)− h(0, 0)

t
= lim
t→0

h(0, t)− h(0, 0)

t
= lim
t→0

0− 0

t
= 0

�

6. Suppose f : Rn → R is differentiable (has total derivative) at a ∈ Rn. Show that f is continuous at
a ∈ Rn.

Solution: Suppose f is differentiable at a, then there exists α = (α1, α2, ..., αn) ∈ Rn, such that

|f(a+ h)− f(a)− αh| = ||h||ε(h) and ε(h)→ 0 as h→ 0.

Hence

|f(a+ h)− f(h)| ≤ ||h||(
n∑
i=1

|αi|) + ||h||ε(h).

and ε(h)→ 0 as h→ 0, therefore f(a+ h)− f(a) as h→ 0. This proves that f is continuous at a.
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7. Use the method of Lagrange multipliers to find the point nearest to the origin in the plane 2x+3y−
z = 5 in R3.

Solution: The distance of an arbitrary point (x, y, z) from the origin is d =
√
x2 + y2 + z2. It

is geometrically clear that there is an absolute minimum of this function for (x, y, z) lying on the
plane. To find it, we instead minimize the function

d2 = f(x, y, z) = x2 + y2 + z2

subject to the constraint g(x, y, z) = 0 where g(x, y, z) = 2x + 3y − z − 5. The gradients of these
two functions are ∇f = (2x, 2y, 2z), ∇g = (2, 3,−1). Since ∇g 6= 0 ever, the absolute minimum of
the distance function we are looking for will occur at a point where

∇f = λg, g = 0

Getting rid of the 2’s in ∇f (which all get absorbed into the dummy constant λ) and settings
components of the gradient equation, we obtain the system of equations,

x = 2λ, y = 3λ, z = −λ, 2x+ 3y − z = 5.

Solving the first three equations gives y = 3
2x, z = −1

2 x. Plugging these into the equation of the
plane gives 2x+ 9

2x+ 1
2x = 5, and so the point we are looking for is x = 5

7 , y = 15
14 , z = −5

14 .
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