DATE OF EXAM: 02.05.2018 Solution
SUBJECT NAME: Analysis I1 - Final Examination - Semester IT

1. Let f : [0,1] — R be the function f(x) = x ¥V x € [0,1]. From first principles, that is, through
computing upper and lower sums, show that

[

Solution: Let Py be the partition {0, %, %, .., 1}, i.e. each point is evenly spaced with the distance
%. The upper and lower sums for such a partition are
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Let N — oo, both U(Py, f) and L(Py, f) go to %, from above and below respectively. Since upper

sums are upper bounds for lower sums, every lower sum is bounded above by % Since there are

lower sums that are arbitrarily close to % (take N large enough), it follows that % is the least upper

bound for the lower sums. Similarly we conclude that % is the greatest lower bound for upper sums.
This shows that f(z) is Riemann integrable on [0,1] with integral 3.

O
2. Suppose g : [0,1] — [0,00) is a continuous function and fol g =0 for all t € ]0,1].

Solution: Suppose g # 0 on [0, 1]. Since g is continuous, there is a non empty interval (¢, d) C [0, 1]
and a > 0 satisfying g(z) > § for x € (c,d), then
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This is a contradiction to fol g=0.
O
3. Let Q be a non-empty finite set and let F = {A : A C Q} be the power set of Q. For A,B € F,

define d(A, B) as the number of elements in AAB := (AN B¢)U (BN A®). Show that d is a metric
on F.

Solution: (i). Since AAA = (AN A°)U (AN A°) = 0, therefore d(A, A) = 0. Suppose d(A, B) =0,
then (AN B U (BN A) =0, we have both (AN B¢) = () and (BN A°) = ). Therefore A = B.
(ii). AAB=(ANB°)U(BNA®) =(BNA°)U(ANDB°) = BAA implies d(4, B) = d(B, A).

(iii). d(A,C) < d(A,B) + d(B,C), Using Venn diagrams one can easily verify the triangular
inequality.

O



4. Let (X,d) be a compact metric space. Suppose f : X — R is a continuous function. Show that
{f(z) : x € X} is compact.

Solution: Let x,, be any sequence in X. Since X is compact then z,, has a convergent subsequence
x4. Now take the sequence f(x,) and notice that it has a convergent subsequence f(z4) [ using
definition of continuity]. Since for any point y € f(X), there exists x € X such that f(z) = y.
Every sequence in f(X) can be written as f(x,) for some sequence x,, € X. Therefore f(X) is
compact.

O

5. Let h: R?2 — R be the function defined by

0 if (a:,y) = (070)

Determine as to whether h is continuous at the origin or not. Compute partial derivatives D1h(0,0)
and D2h(0,0) if they exist.

h(z,y) = {S-i-y if (z,y) # (0,0)

Solution: To prove that h is continuous at the origin. Let € > 0 be given, choose § > 0 such that
62 = § Whenever 0 < (a;"y) c RQ with |($,y)| = Inax{'xl7 |y|} < €, we have
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|h(z,y) — h(0,0)| = |h(z,y)| = 212 < PR 3x° < 36° < e.

Thus h is continuous at (0, 0).

Du(0,0) = lim MOFED = h(0.0) ) 2O =RO0) gy
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6. Suppose f:R™ = R is differentiable (has total derivative) at a € R™. Show that f is continuous at
a € R".

Solution: Suppose f is differentiable at a, then there exists a = (a1, @a, ..., ay,) € R™, such that
|f(a+h)— f(a) — ah| = ||h||le(h) and €e(h) =0 as h— 0.

Hence
n

[fla+h) = F(R) < RIS laul) + [[Alle(h).
i=1
and e(h) — 0 as h — 0, therefore f(a + h) — f(a) as h — 0. This proves that f is continuous at a.
]



7. Use the method of Lagrange multipliers to find the point nearest to the origin in the plane 2z + 3y —
z=>5 in R3.

Solution: The distance of an arbitrary point (z,y,z) from the origin is d = /22 4+ y2 + 22. It
is geometrically clear that there is an absolute minimum of this function for (z,y, z) lying on the
plane. To find it, we instead minimize the function

& = f(z,y,2) =2 +y* + 2°

subject to the constraint g(x,y,z) = 0 where g(z,y,2) = 2z + 3y — z — 5. The gradients of these
two functions are Vf = (2z,2y,2z), Vg = (2,3, —1). Since Vg # 0 ever, the absolute minimum of
the distance function we are looking for will occur at a point where

V=g, g=0

Getting rid of the 2’s in Vf (which all get absorbed into the dummy constant A) and settings
components of the gradient equation, we obtain the system of equations,

c=2\y=3\z=—-\2x+3y—z=>5.

Solving the first three equations gives y = %m, 2z = =Ztx. Plugging these into the equation of the

. 9 1. - : .5 15 _ _ —5
plane gives 2r + 5x + 52 = 5, and so the point we are looking for is z = 2,y = 17,2 = 7}.
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